PATTERN RECOGNITION IS A CLINICAL REASONING PROCESS IN MUSCULOSKELETAL PHYSIOTHERAPY

Peter Andrew Miller B Phty, Grad Cert Health Science (Education)

Thesis submission for Master of Medical Science (Physiotherapy) The University of Newcastle, Australia Submitted March 2009

STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis is the result of original research, the greater part of which was completed subsequent to admission to candidature for the degree.

Date

Signed

Peter Andrew Miller

ACKNOWLEDGEMENTS

Considerable gratitude is extended to the participants of this study who gave up their valuable time to put their problem solving skills on display for analysis. The Capacity in Research & Evaluation (CAPRE) is acknowledged for the Primary Health Care Small Research Grant that funded the study. Many thanks are offered to the supervisors of the study, Professor Darren Rivett and Ms Rosemary Isles, for their support and guidance. Finally appreciation must be offered to Jessica, Josh and Max, for allowing me the time to complete this career goal.

SUPERVISOR: Prof Darren Rivett BAppSc (Phty), MAppSc (ManipPhty), PhD

CO-SUPERVISOR: Rosemary Isles BPhty (Hons), M Ed, GradCertEduc (Tertiary)

TABLE OF CONTENTS

DECL	ARATION		ii
ACKNOWLEDGEMENTS			iii
TABLE OF CONTENTS			iv
LIST (OF TABLES		х
LIST	OF FIGURES		xii
LIST	OF APPENDICES		xiii
ABST	RACT		xiv
ABBR	EVIATIONS		xvi
CHAF	TER 1. INTRODUCTION		1
1.1	RATIONALE OF THE STUDY		1
1.2	STUDY AIMS		2
1.3	THESIS OUTLINE		3
CHAP	TER 2. LITERATURE REVIEW		4
2.1	BACKGROUND		4
2.1.1	Literature search strategy		5
2.1.2	Problem solving in physiotherapy	clinical practice	5
2.1.3	Integration of paradigms		6
2.2	CLINICAL REASONING RESEARCH METHODS		10
2.2.1	Single case study design		10
2.2.2	Simulated case design		11
2.2.3	Simulated client assessments		12
2.2.4	Verbal reported data		13
2.2.5	Retrospective interview		14
2.2.6	Observational data		16
2.2.7	Mixed methods		16
	Embedded design		17
	Triangulation		18
2.3	HYPOTHESIS GENERATION		19
2.3.1	Hypothesis categories		20

2.3.2	Diagnostic hypotheses		23
2.3.3	Basis for empirico-analytical reasoning models		24
2.4	HYPOTHETICO-DEDUCTIVE REASONING		25
2.4.1	Defining hypothetico-deductive re	asoning	25
2.4.2	Hypothetico-deductive reasoning	in physiotherapy	26
2.4.3	Characteristics of hypothetico-dee	ductive reasoning	27
2.4.4	Summary of hypothetico-deductive	e reasoning	29
2.5	PATTERN RECOGNITION		29
2.5.1	Defining pattern recognition		30
	Single hypothesis		32
	Significant case features		32
	Information availability		33
2.5.2	Pattern recognition in physiothera	ару	34
2.5.3	Characteristics of pattern recogni	tion	35
	Knowledge		35
	Categorisation		36
	Efficiency		37
	Accuracy		38
2.5.4	Summary of pattern recognition		40
2.6	INTEGRATION OF CLINICAL RE	ASONING MODELS	41
2.6.1	Further exploration of forwards reasoning		42
2.6.2	Separating forwards from backwa	ards reasoning	42
2.6.3	Context specificity		45
2.7	KNOWLEDGE		46
2.7.1	Types of knowledge		46
2.7.2	Structured knowledge		47
2.7.3	The role of knowledge		49
2.8	EXPERTISE		49
2.8.1	Common attributes of an expert p	hysiotherapist	50
2.8.2	Clinical reasoning skill		51
2.8.3	Significant case features		52
2.9	REASONING IMPACT ON CURRENT HEALTHCARE		53
2.9.1	Errors in clinical reasoning		54

2.9.2	Possible impact of accurate clinic	al patterns	 56
2.9.3	Reasoning skill as a cost effective	e variable	 57
2.10	SUMMARY		 57
CHAF	TER 3. METHODS		 59
3.1	INTRODUCTION		 59
3.2	PREPARATION		 61
3.2.1	Ethical approval		 61
3.2.2	Case development		 61
3.2.3	Training of case actor		 64
3.2.4	Pilot trial of method		 66
3.3	SAMPLING		 66
3.3.1	Sample size		 66
3.3.2	Expert inclusion criteria		 67
3.3.3	Novice inclusion criteria		 69
3.3.4	Recruitment process		 70
3.4	DATA COLLECTION		 71
3.4.1	Location		 71
3.4.2	Equipment		 72
3.4.3	Participation process		 74
3.4.4	Semi-structured interview techniq	ue	 74
3.4.5	Transcription		 75
3.5	QUALITATIVE TRANSCRIPT AN	IALYSIS	 76
3.5.1	Code development		 76
3.5.2	Qualitative data analysis software	;	 77
3.5.3	Data analysis process		 78
	Overview Reading		 79
	Coding		 79
	Coding accuracy and reliability	у	 81
3.5.4	Theme analysis		 81
3.5.5	Interpretation		 82
3.6	QUANTITATIVE TRANSCRIPT A	NALYSIS	 82
3.6.1	Identification of pattern recognitio	n	 82

3.6.2	Expert and novice group difference	es in pattern recognition use	85
3.6.3	Accuracy of pattern recognition		85
3.6.4	Hypothesis category utilisation		85
3.7	QUANTITATIVE VIDEO DATA AN	NALYSIS	86
3.8	TRIANGULATION		87
3.9	SUMMARY OF METHODOLOGY	,	89
CHAF	TER 4. RESULTS		90
4.1	INTRODUCTION TO FINDINGS		90
4.1.1	Examples of coded text provided	as results	91
4.2	PARTICIPANT RECUITMENT		91
4.3	CODING AND THEMATIC ANAL	YSIS	92
4.3.1	Tree codes		92
	Data collection		93
	Hypothesis related		94
	Category 1 Activity & participa	tion	94
	Category 2 Patients perspective	ve & psychosocial factors	95
	Category 3 Pathobiological me	echanisms	95
	Category 4 Physical impairme	nts and structural sources	96
	Category 5 Contributing factor	S	96
	Category 6 Precautions and c	ontraindications	96
	Category 7 Management and	treatment	97
	Category 8 Prognosis		97
	Category 9 Non-specific		98
	Planning		98
	Examination		98
	Management		99
	Significant case feature		99
	Knowledge		100
	Propositional knowledge		101
	Non-propositional knowledge		102
	Professional non-proposition	nal knowledge	102
	Experiential knowledge		102

	Structured knowledge		102
	Personal non-propositional	knowledge	103
	Self awareness		103
4.3.2	Intra-coder reliability		105
4.3.3	Free codes		106
4.3.4	Thematic analysis		112
4.4	PATTERN RECOGNITION		115
4.4.1	Identification of pattern recognitio	n	115
4.4.2	Comparison of expert and novice	use of pattern recognition	122
4.4.3	Accuracy		124
4.4.4	Efficiency		127
	Pattern recognition efficiency		128
	Comparison of efficiency between	n groups	129
4.4.5	Participant order of assessment of	uestions	130
4.5	QUALITATIVE ANALYSIS FINDI	NGS	132
4.5.1	Analytical process		132
4.5.2	Pattern related		133
4.5.3	Developing patterns		135
4.6	PARTICIPANT HYPOTHESES		139
4.6.1	Final hypothesis category utilisation	on	139
4.6.2	Overall hypothesis category utilisation	ation	141
4.7	ADDITIONAL FINDINGS		146
4.7.1	Relative importance of data		146
4.7.2	Concurrent integration of data		148
4.7.3	Awareness of errors		152
4.7.4	Predictive reasoning		152
4.7.5	Person centred approach to asse	ssment	153
4.8	STUDY DESIGN RELATED RES	ULTS	155
4.8.1	Case simulation data		155
4.8.2	Study context influences		159
CHAF	TER 5. DISCUSSION		163
5.1	NON-ANALYTICAL REASONING	;	164

5.1.1	Accuracy of pattern recognition		167
5.1.2	Efficiency of pattern recognition		170
5.2	PARTICIPANT ORDER OF QUE	STIONING	172
5.2.1	Triangulation		172
5.3	PATTERNS		174
5.3.1	Categorisation and patterns		174
5.3.2	Knowledge structure and pattern	accuracy	176
5.3.3	Developing patterns		178
5.3.4	Specificity of patterns		180
5.3.5	Significant case features		182
5.3.6	Pattern elimination		183
5.4	HYPOTHESIS CATEGORY USE		184
5.5	OBSERVED APPROACHES TO	REASONING	187
5.5.1	Predictive reasoning		187
5.5.2	Metacognition		188
5.5.3	Awareness of errors		189
5.5.4	Person centred approach		190
5.6	STUDY DESIGN		192
5.6.1	Participant recruitment		192
5.6.2	Experimental context influences		193
5.6.3	Simulated client		194
5.6.4	Coding process		195
5.7	STUDY LIMITATIONS		196
5.8	SUMMARY OF DISCUSSION		198
CHAF	TER 6. CONCLUSIONS		199
6.1	KEY FINDINGS		199
6.2	IMPLICATIONS AND FURTHER	RESEARCH AND EDUCATION	201
REFE	RENCE LIST		204
APPE	NDICES		218

LIST OF TABLES

Table 2.1	Interpretive reasoning strategies	8
Table 2.2	Hypothesis categories	22
Table 2.3	Common elements of pattern recognition described in the	
	literature	31
Table 2.4	Clinical reasoning errors in physiotherapy	55
Table 3.1	Qualitative analysis process	78
Table 3.2	Tree codes: predetermined code schema	80
Table 3.3	Identification features of pattern recognition	83
Table 4.1	Self awareness sub-codes	105
Table 4.2	Intra-rater coding reliability	106
Table 4.3	Free nodes	107
Table 4.4	Themes identified	114
Table 4.5	Overall participant scoring tool identifying pattern recognition	
	in Expert D	116
Table 4.6	Overall participant scoring tool without evidence of pattern	
	recognition in Novice S	118
Table 4.7	Summary of pattern recognition related results	121
Table 4.8	Comparison of pattern recognition use between groups	122
Table 4.9	Stated primary hypothesis relative to pattern recognition use	125
Table 4.10	Pattern recognition accuracy between groups	126
Table 4.11	Pattern recognition accuracy overall	126
Table 4.12	Timing data relating to central hypothesis formation	128
Table 4.13	Total assessment time relative to reasoning method and	
	participant group	129
Table 4.14	Total assessment time relative to participant group only	130
Table 4.15	Final hypothesis extent of category use	140
Table 4.16	Extent of overall hypothesis category use	142
Table 4.17	Group comparisons for the use of each hypothesis category.	144
Table 4.18	Novice use of hypothesis categories	145
Table 4.19	Expert use of hypothesis categories	145

Table 4.20	Total assessment time relative to delayed versus concurrent	
	integration of data	151
Table 4.21	Total assessment time of participants using HDR relative to	
	delayed versus concurrent integration of data	151
Table 4.22	Simulated client response data	157

LIST OF FIGURES

Figure 2.1	Relationship of clinical reasoning to decision-making	4
Figure 2.2	Reasoning strategies within diagnosis and management	9
Figure 2.3	Embedded design	17
Figure 2.4	Triangulation design	18
Figure 2.5	Example of diagnostic hypothesis variations based on the	
	range of categories	24
Figure 2.6	Available cues / data for developing hypotheses using PR	34
Figure 2.7	A separate view of forwards and backwards reasoning	
	models	43
Figure 2.8	Deductive strategies following incorrect pattern recognition .	44
Figure 2.9	Pattern recognition following deductive strategies	44
Figure 2.10	Example of encapsulated concepts	48
Figure 3.1	Study method and chapter outline	60
Figure 3.2	X-ray image of the grade 3 spondylolisthesis case	64
Figure 3.3	Research location and recording equipment	72
Figure 3.4	Notebook computer recording setup in adjacent room	73
Figure 3.5	Embedded method design	88
Figure 3.6	Triangulated design	88
Figure 4.1	Knowledge sub-coding	100
Figure 4.2	Credible intervals for the identification of pattern recognition	124
Figure 4.3	Final hypothesis category use by experts and novices	141
Figure 4.4	Overall hypothesis category use by experts and novices	143
Figure 5.1	Study method triangulation	173
Figure 5.2	Knowledge structure and pattern types	175
Figure 5.3	Pattern accuracy and knowledge relationship	177
Figure 5.4	Specificity of patterns	181
Figure 5.5	Input of clinical data into broad and specific patterns	182
Figure 5.6	Hypothesis categories and reasoning types	185

LIST OF APPENDICES

APPENDIX 1.	ETHICS APPROVAL	219
APPENDIX 2.	CASE SCENARIO	220
APPENDIX 3.	ACTOR TRAINING INFORMATION	226
APPENDIX 4.	SIMULATED CLIENT RESPONSE CHECKLIST	235
APPENDIX 5.	EXPERT PARTICIPANT RECRUITMENT LETTERS	237
APPENDIX 6.	ADVERTISEMENT FOR NOVICE PARTICIPANTS	241
APPENDIX 7.	INFORMATION STATEMENT & PARTICIPANT	
	CONSENT FORM	242
APPENDIX 8.	ETHICS VARIATION	246
APPENDIX 9.	STUDY SETUP PROCEDURES & EQUIPMENT	247
APPENDIX 10.	PARTICIPANT ORIENTATION SHEETS	250
APPENDIX 11.	INTERVIEW PROTOCOL SHEET	251
APPENDIX 12.	FINAL CODEBOOK	253
APPENDIX 13.	PATTERN RECOGNITION IDENTIFICATION TOOLS .	255
APPENDIX 14.	SELF-AWARENESS SUB-CODE EXAMPLES	257
APPENDIX 15.	FINAL PARTICIPANT HYPOTHESES	258

ABSTRACT

Pattern recognition is a non-analytical clinical reasoning process which has been reported in the medical and allied health literature for some time. At a time when clinical problem solving was largely considered to consist of the analytical process of hypothetico-deductive reasoning, pattern recognition was introduced in the literature with observations of greater efficiency and accuracy. The research that followed these apparent opposing models of clinical reasoning resulted in significant growth in the understanding of problem solving in healthcare. On commencing this thesis the knowledge surrounding pattern recognition in physiotherapy was insufficient for its inclusion in educational design. Consequently the aims of the study described in this thesis were to clearly identify pattern recognition using high fidelity case methods and observe its relationship with accuracy and efficiency.

The study utilised a single case study with multiple participants. A real clinical case with a diagnosis of high grade lumbar spine spondylolisthesis was simulated using a trained actor. This provided a high fidelity case study method allowing the observation of more realistic problem solving practices as compared with the common low fidelity paper case approach.

Two participant groups were included in the study to investigate the common belief that pattern recognition is an experience based reasoning process. The expert group comprised ten titled musculoskeletal physiotherapists with a minimum of ten years overall clinical experience and greater than two years experience following the completion of postgraduate study. The novice group included nine physiotherapists in their first year of clinical practice following completion of an undergraduate degree.

Qualitative data collection methods included observation of the participant taking a patient history of the simulated client and a stimulated retrospective recall interview with the participant. The mixed method analysis used in the

study provided methodological triangulation of the results and supported the presence of pattern recognition in musculoskeletal physiotherapy. The quantitative research findings indicated that pattern recognition was significantly more likely to produce an accurate diagnostic outcome than analytical reasoning strategies during a physiotherapy history. However its use was not a guarantee of success with only three of the four experts using pattern recognition identifying the correct diagnosis. Although four experts utilised pattern recognition as compared with only one novice, no significant overall differences were found in the use of pattern recognition between the expert and novice participant groups. The findings relating to time data found that expert participants took longer to conduct the client history than novices. Similarly those participants identified using pattern recognition also required more time which seemingly contradicts the view of pattern recognition being an efficient clinical reasoning process. This finding was limited by the incomplete nature of the study which did not include a physical examination or any client management.

ABBREVIATIONS

- APA Australian Physiotherapy Association
- E Expert
- HDR Hypothetico-deductive reasoning
- LBP Low back pain
- MPA Musculoskeletal Physiotherapy Australia
- N Novice
- PR Pattern recognition
- SIJ Sacro-iliac joint